Author Affiliations
Abstract
We present a grating imaging scanning lithography system for the fabrication of large-sized gratings. In this technology, +(-)1-order diffractive beams are generated by a phase grating and selected by a spatial filter. Meanwhile, a 4f system enables the +(-)1-order diffractive beams to form a grating image with a clear jagged-edge boundary on the substrate. A high-precision two-dimensional (2D) mobile stage is used for complementary cyclical scanning, thereby effectively eliminating image stitching errors. The absence of such errors results in a seamless and uniform large-sized grating. Characterized by a simple structure, high energy use, and good stability, this lithography system is highly relevant to the high-speed and cost-effective production of large-sized gratings.
050.0050 Diffraction and gratings 050.1950 Diffraction gratings 
Chinese Optics Letters
2013, 11(8): 080501
Author Affiliations
Abstract
A simple modal analysis (MA) method to explain the diffraction process of 0th order nulled phase mask is presented. In MA, multiple reflections of the grating modes at grating interfaces are considered by introducing equivalent Fresnel coefficients. Analytical expressions of the diffraction efficiencies and modal guidelines for the 0th order nulled phase grating design are also presented. The phase mask structure, which comprises a high-index contrast HfO2 grating and a fused-silica substrate, is optimized using rigorous coupled-wave analysis around the 800-nm wavelength, after which the modal guideline for cancellation of the 0th order in a phase mask is verified. The proposed MA method illustrates the inherent physical mechanism of multiple reflections of the grating modes in the diffraction process, which can help to analyze and design both low-contrast and high-contrast gratings.
050.1950 Diffraction gratings 050.1960 Diffraction theory 050.6624 Subwavelength structures 
Chinese Optics Letters
2013, 11(7): 070502
Author Affiliations
Abstract
A simplified modal method to explain the resonance phenomenon in guided mode resonance (GMR) gratings with asymmetric coatings is presented. The resonance observed is due to the interaction of two propagation modes inside the grating. The reflectivity spectra and electric field distributions calculated from the simplified modal method are compared using rigorous coupled-wave analysis (RCWA). The influences of high-order evanescent modes on the resonance peak are analyzed. A matrix Fabry-Perot (FP) resonance condition is developed to evaluate the resonance wavelength. An explanation for the resonance phenomenon observed based on the FP resonance phase condition is also proposed and demonstrated. The simplified method provides clear physical insights into GMR gratings that are useful for the analysis of a variety of other resonance gratings.
050.0050 Diffraction and gratings 050.1950 Diffraction gratings 260.5740 Resonance 
Chinese Optics Letters
2013, 11(6): 060501

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!